Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Epigenet ; 10(1): dvad010, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38496251

RESUMEN

The mammalian genome undergoes two global epigenetic reprogramming events during the establishment of primordial germ cells and in the pre-implantation embryo after fertilization. These events involve the erasure and re-establishment of DNA methylation marks. However, imprinted genes and transposable elements (TEs) maintain their DNA methylation signatures to ensure normal embryonic development and genome stability. Despite extensive research in mice and humans, there is limited knowledge regarding environmentally induced epigenetic marks that escape epigenetic reprogramming in other species. Therefore, the objective of this study was to examine the characteristics and locations of genomic regions that evade epigenetic reprogramming in sheep, as well as to explore the biological functions of the genes within these regions. In a previous study, we identified 107 transgenerationally inherited differentially methylated cytosines (DMCs) in the F1 and F2 generations in response to a paternal methionine-supplemented diet. These DMCs were found in TEs, non-repetitive regions, and imprinted and non-imprinted genes. Our findings suggest that genomic regions, rather than TEs and imprinted genes, have the propensity to escape reprogramming and serve as potential candidates for transgenerational epigenetic inheritance. Notably, 34 transgenerational methylated genes influenced by paternal nutrition escaped reprogramming, impacting growth, development, male fertility, cardiac disorders, and neurodevelopment. Intriguingly, among these genes, 21 have been associated with neural development and brain disorders, such as autism, schizophrenia, bipolar disease, and intellectual disability. This suggests a potential genetic overlap between brain and infertility disorders. Overall, our study supports the concept of transgenerational epigenetic inheritance of environmentally induced marks in mammals.

2.
Animals (Basel) ; 11(10)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34679854

RESUMEN

Livestock radiated out from domestication centres to most regions of the world, gradually adapting to diverse environments, from very hot to sub-zero temperatures and from wet and humid conditions to deserts. The climate is changing; generally global temperature is increasing, although there are also more extreme cold periods, storms, and higher solar radiation. These changes impact livestock welfare and productivity. This review describes advances in the methodology for studying livestock genomes and the impact of the environment on animal production, giving examples of discoveries made. Sequencing livestock genomes has facilitated genome-wide association studies to localize genes controlling many traits, and population genetics has identified genomic regions under selection or introgressed from one breed into another to improve production or facilitate adaptation. Landscape genomics, which combines global positioning and genomics, has identified genomic features that enable animals to adapt to local environments. Combining the advances in genomics and methods for predicting changes in climate is generating an explosion of data which calls for innovations in the way big data sets are treated. Artificial intelligence and machine learning are now being used to study the interactions between the genome and the environment to identify historic effects on the genome and to model future scenarios.

3.
Genes (Basel) ; 12(4)2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917627

RESUMEN

Stress in livestock reduces productivity and is a welfare concern. At a physiological level, stress is associated with the activation of inflammatory responses and increased levels of harmful reactive oxygen species. Biomarkers that are indicative of stress could facilitate the identification of more stress-resilient animals. We examined twenty-one metabolic, immune response, and liver function biomarkers that have been associated with stress in 416 Italian Simmental and 436 Italian Holstein cows which were genotyped for 150K SNPs. Single-SNP and haplotype-based genome-wide association studies were carried out to assess whether the variation in the levels in these biomarkers is under genetic control and to identify the genomic loci involved. Significant associations were found for the plasma levels of ceruloplasmin (Bos taurus chromosome 1-BTA1), paraoxonase (BTA4) and γ-glutamyl transferase (BTA17) in the individual breed analysis that coincided with the position of the genes coding for these proteins, suggesting that their expression is under cis-regulation. A meta-analysis of both breeds identified additional significant associations with paraoxonase on BTA 16 and 26. Finding genetic associations with variations in the levels of these biomarkers suggests that the selection for high or low levels of expression could be achieved rapidly. Whether the level of expression of the biomarkers correlates with the response to stressful situations has yet to be determined.


Asunto(s)
Biomarcadores/sangre , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Estrés Fisiológico , Animales , Arildialquilfosfatasa/sangre , Bovinos , Ceruloplasmina/análisis , Genómica , gamma-Glutamiltransferasa/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...